全文获取类型
收费全文 | 3918篇 |
免费 | 627篇 |
专业分类
公路运输 | 813篇 |
综合类 | 1863篇 |
水路运输 | 947篇 |
铁路运输 | 743篇 |
综合运输 | 179篇 |
出版年
2025年 | 63篇 |
2024年 | 137篇 |
2023年 | 140篇 |
2022年 | 141篇 |
2021年 | 189篇 |
2020年 | 189篇 |
2019年 | 140篇 |
2018年 | 147篇 |
2017年 | 114篇 |
2016年 | 146篇 |
2015年 | 175篇 |
2014年 | 261篇 |
2013年 | 229篇 |
2012年 | 277篇 |
2011年 | 316篇 |
2010年 | 215篇 |
2009年 | 266篇 |
2008年 | 222篇 |
2007年 | 325篇 |
2006年 | 263篇 |
2005年 | 193篇 |
2004年 | 106篇 |
2003年 | 80篇 |
2002年 | 41篇 |
2001年 | 60篇 |
2000年 | 32篇 |
1999年 | 17篇 |
1998年 | 18篇 |
1997年 | 6篇 |
1996年 | 9篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 2篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1985年 | 1篇 |
排序方式: 共有4545条查询结果,搜索用时 0 毫秒
51.
52.
介绍了遗传算法的发展历史和图像分割的应用现状,分析了基于基本的遗传算法的图像分割方法,并将遗传算法与模糊集理论相结合用于医学图像分割,提出了基于模糊隶属度的遗传算法的医学图像分割方法。并对不同方法,如分割效果、计算代价进行了分析比较。 相似文献
53.
基于自适应遗传算法的路堤边坡稳定性分析方法 总被引:6,自引:0,他引:6
基于圆弧滑动面假定,提出了一种用自适应遗传算法搜索最危险滑动面及其对应的最小安全系数的新方法。该方法是一种改进的遗传算法,采用自适应求取适值、动态调整交叉率和变异率、自适应区间收缩。自适应遗传算法有效克服了传统方法易陷入局部极小的缺陷,提高了算法的搜索效率、精度和稳定性。 相似文献
54.
为研究大跨度顸应力混凝土(PC)斜拉桥的可靠度评估问题,提出了适用于大跨度PC斜拉桥这类复杂结构可靠性分析的混合算法.该方法综合运用了有限元分析(FEA)、径向基函数(RBF)神经网络、遗传算法(GA)和Monte Carlo重要抽样(MCIS)方法,并对算法中的关键步骤(RBF神经网络的初始样本点设计方法、MCIS的抽样中心点位置等)进行了改进,使结构分析模块与可靠度计算模块智能结合.利用数值算例的可靠度分析对该算法的有效性进行了验证.最后,以一座主跨为420 m的双塔PC斜拉桥为工程背景,进行了正常使用极限状态下的可靠度分析.参数分析表明:在汽车荷载作用下,该斜拉桥的主梁跨中位移超限失效概率比最长斜拉索强度失效概率高;汽车荷载的均值和标准差是影响斜拉桥可靠度的重要因素;随着汽车荷载均值系数的增大,主梁跨中位移超限失效的可靠指标下降的趋势较为显著. 相似文献
55.
为了去除高速公路监控视频中自身位置不稳定的事物给全局运动矢量估计带来误差,先通过Canny算子检测图像中的直线,并根据车道边界的特征筛选出道路边界,确定道路区域。再检测道路区域内的Harris角点信息,并与背景图中道路区域内的角点位置进行匹配,从而得到全局运动矢量,并计算出稳定的图像。实验表明,该算法能够满足高速公路场景下的稳像需求。 相似文献
56.
57.
Terry L. Friesz Taeil Kim Changhyun Kwon Matthew A. Rigdon 《Transportation Research Part B: Methodological》2011,45(1):176-207
In this paper we present a dual-time-scale formulation of dynamic user equilibrium (DUE) with demand evolution. Our formulation belongs to the problem class that Pang and Stewart (2008) refer to as differential variational inequalities. It combines the within-day time scale for which route and departure time choices fluctuate in continuous time with the day-to-day time scale for which demand evolves in discrete time steps. Our formulation is consistent with the often told story that drivers adjust their travel demands at the end of every day based on their congestion experience during one or more previous days. We show that analysis of the within-day assignment model is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality. We also show there is a class of day-to-day demand growth models that allow the dual-time-scale formulation to be decomposed by time-stepping to yield a sequence of continuous time, single-day, dynamic user equilibrium problems. To solve the single-day DUE problems arising during time-stepping, it is necessary to repeatedly solve a dynamic network loading problem. We observe that the network loading phase of DUE computation generally constitutes a differential algebraic equation (DAE) system, and we show that the DAE system for network loading based on the link delay model (LDM) of Friesz et al. (1993) may be approximated by a system of ordinary differential equations (ODEs). That system of ODEs, as we demonstrate, may be efficiently solved using traditional numerical methods for such problems. To compute an actual dynamic user equilibrium, we introduce a continuous time fixed-point algorithm and prove its convergence for effective path delay operators that allow a limited type of nonmonotone path delay. We show that our DUE algorithm is compatible with network loading based on the LDM and the cell transmission model (CTM) due to Daganzo (1995). We provide a numerical example based on the much studied Sioux Falls network. 相似文献
58.
Multi-objective optimization of a road diet network design 总被引:1,自引:0,他引:1
Keemin Sohn 《Transportation Research Part A: Policy and Practice》2011,45(6):499-511
The present study focuses on the development of a model for the optimal design of a road diet plan within a transportation network, and is based on rigorous mathematical models. In most metropolitan areas, there is insufficient road space to dedicate a portion exclusively for cyclists without negatively affecting existing motorists. Thus, it is crucial to find an efficient way to implement a road diet plan that both maximizes the utility for cyclists and minimizes the negative effect on motorists. A network design problem (NDP), which is usually used to find the best option for providing extra road capacity, is adapted here to derive the best solution for limiting road capacity. The resultant NDP for a road diet (NDPRD) takes a bi-level form. The upper-level problem of the NDPRD is established as one of multi-objective optimization. The lower-level problem accommodates user equilibrium (UE) trip assignment with fixed and variable mode-shares. For the fixed mode-share model, the upper-level problem minimizes the total travel time of both cyclists and motorists. For the variable mode-share model, the upper-level problem includes minimization of both the automobile travel share and the average travel time per unit distance for motorists who keep using automobiles after the implementation of a road diet. A multi-objective genetic algorithm (MOGA) is mobilized to solve the proposed problem. The results of a case study, based on a test network, guarantee a robust approximate Pareto optimal front. The possibility that the proposed methodology could be adopted in the design of a road diet plan in a real transportation network is confirmed. 相似文献
59.
60.